Formation and Properties of Dimethyl Sulfide-Tetraborane(8). Base-Induced Dynamic Behavior of Tetraborane(8) Adducts

Minoru Ishii[†] and Goji Kodama*

Received January 5, I990

Dimethyl sulfide-tetraborane(8) [B₄H₈·S(CH₃)₂] was produced from the reaction of B₅H₁₁ with S(CH₃)₂ and was isolated as a liquid at -23 °C. The compound was unstable at room temperature but showed an incre adduct $B_5H_{11}S(CH_3)_2$ was identified at -95 °C as a precursor of $B_4H_8S(CH_3)_2$. The ¹¹B NMR spectra of $\hat{B_4H_8}S(CH_3)_2$ in $S(CH_3)_2$ showed that the B₃ and B_{2,4} signals were coalesced at room temperature, indicating that a rapid internal exchange motion was induced by the solvent $S(CH_3)_2$. The diethyl sulfide, tetrahydrothiophene, and trim the same coalescence in alkyl sulfides at higher temperatures. **A** possible mechanism was proposed for the induced dynamic behavior of these B₄H₈ adducts. The B₃ and B_{2,4} signals of B₄H₈-N(CH₃)₃ did not coalesce when the adduct was dissolved in dialkyl sulfides. The position of the ligand (exo or endo) with respect to the bent B_4H_8 framework might be responsible for the different behavior of the amine adduct.

Introduction

The reaction of pentaborane(11) with dimethyl sulfide was known to produce dimethyl sulfide-tetraborane(8) $[B_4H_8-S(CH_3)_2;$ shown in the following diagram].'

However, the compound had not been isolated. Recently, dimethyl sulfide-triborane(7), $B_3H_7S(CH_3)_2$, was isolated and was found to be a liquid that was stable at room temperature.² This triborane adduct underwent a slow change to form pentaborane(9) and $BH₃$ -S(CH₃)₂ when dissolved in dimethyl sulfide.² Furthermore, it underwent a facile cleavage reaction with trimethylamine at -80 °C to give $B_2H_4.2N(CH_3)$, and $BH_3N(CH_3)$,³ These interesting findings, which followed the isolation of $B_3H_7S(CH_3)_2$, prompted us to undertake a similar investigation for the dimethyl sulfide adduct of B_4H_8 . The results are reported in this paper.

Results

Formation and Isolation of $B_4H_8 \cdot S(CH_3)_2$ **.** When pentaborane(11) and excess $S(CH_3)_2$ were mixed in dichloromethane at -80 °C, B_4H_8 ·S(CH₃)₂ formed immediately according to

$$
B_5H_{11} + 2S(CH_3)_2 \rightarrow B_4H_8 \cdot S(CH_3)_2 + BH_3 \cdot S(CH_3)_2 \tag{1}
$$

The B_4H_8 adduct was isolated as a colorless liquid by pumping out the solvent and $BH_3 \cdot S(CH_3)_2$ from the reaction mixture at -23 °C. This tetraborane(8) adduct was unstable at room temperature. However, the compound appeared to be more stable when placed in dimethyl sulfide; a solution of B_4H_8 S(CH₃)₂ in $SCH₃$ ₂ did not show any change at all when it was kept standing at room temperature for 1 h.

The formation of B_4H_8 ·S(CH₃)₂ from B_5H_{11} and S(CH₃)₂ (eq 1) was preceded by the formation of an unstable 1:l adduct, B_5H_{11} ·S(CH₃)₂. This precursor was characterized by its ¹¹B NMR signals at -4.2 , -19.3 , and -48.8 ppm with an intensity ratio of 3:1:1. Although a mixture of B_5H_{11} and $S(CH_3)_2$ in a 1:2 or 1:excess (>2) molar ratio produced $B_4H_8S(CH_3)_2$ and BH_3 . $S(CH_3)_2$ instantaneously at -80 °C, the signals of $B_5H_{11}S(CH_3)_2$ were detectable at -95 °C along with the signals of the other products. On the other hand, if a *1-equiv* quantity of $S(CH_3)_2$ was added *slowly* into a *dilute* solution of B_5H_{11} in CH_2Cl_2 at *-95 OC* while the solution was *constantly agitated,* the signals of

Table 1. "B **NMR** Data for Dialkyl Sulfide-Tetraborane(8) Adducts and Related Borane Adducts

		Т,	shift, ppm		BH,	shift,	
compd	solvent	۰c	в.	B_{24}	в.	adduct	ppm
B_4H_8 -S(CH ₃) ₂	CH,CI,	$+20$	-33.6 -7.6 $+1.8$				
$B_4H_8-S(CH_3)$	SCH ₃) ₂		-80 -34.2 -6.9 $+1.8$			$BH-S-$ (CH ₁)	-22.1
$BAHs$ S(C ₂ H ₅) ₂	$S(C,H_1)$					-60 -36.8 -7.0 $+1.3$ BH \cdot S- (C ₂ H ₅)	-24.3
$B_4H_8-S(CH_2)_4$	$S(CH_2)_4$					-60 -33.5 -7.1 $+1.7$ BH ₃ S- (CH ₂) ₄	-21.6
$B_4H_8 \cdot P(CH_3)_3^a$ $B_4H_2N(CH_3)^b$	CH ₂ Cl ₂ CH ₂ C ₁		$+25 -51.5 -7.0$ $+25$ -22.5 -8.5 $+1.1$		-1.8		

Reference **4b.** *Reference 4a.

the **1:l** adduct were observed clearly along with the signals of B_5H_{11} , as shown in Figure 1. The compound decomposed slowly at -90 °C to form B_4H_8 ·S(CH₃)₂. At -60 °C, the decomposition was fast; the $B_4H_8 \cdot S(CH_3)_2$ signals became intense, and the signal of B_2H_6 appeared. These reactions are summarized by the equations

$$
B_5H_{11} + S(CH_3)_2 \xrightarrow{\text{below -95 °C}} B_5H_{11} \cdot S(CH_3)_2 \tag{2}
$$

 $B_5H_{11} \cdot S(CH_3)_2 + S(CH_3)_2 \xrightarrow{\text{above } -90 \text{ }^{\circ}\text{C}}$ $B_4H_8 \cdot S(CH_3)_2 + BH_3 \cdot S(CH_3)_2$ (3)

$$
B_{5}H_{11} \cdot S(CH_{3})_{2} \xrightarrow{\text{ above -90 °C}} B_{4}H_{8} \cdot S(CH_{3})_{2} + \frac{1}{2}B_{2}H_{6} \quad (4)
$$

¹¹**B NMR** Spectra of B_4H_8 ·S(CH₃)₂. (a) In CH₂Cl₂. The ¹¹B NMR data are listed in Table **I.** The assignment for the signals of B_4H_8 -S(CH₃)₂ was made with reference to the spectra of known B₄H₈ adducts.^{4,5} The pattern of the spectrum remained unchanged in the temperature range from -80 to $+20$ °C. Unlike some of the adducts of B_4H_8 ^{4b,5} this compound appeared to exist in only one isomeric form (ex0 or endo form according to the position of the ligand with respect to the hinge-shaped structure of the B_4 framework); that is, only one B_3 signal could be seen. The B, signals of the two isomers usually appear separated in the

- (1)
- (2)
- (3)
- (4)
- Kodama, G.; Saturnino, D. J. *Inorg. Chem.* 1975, 14, 2243.
Ishii, M.; Kodama, G. *Inorg. Chem.* 1990, 29, 817.
Ishii, M.; Kodama, G. *Inorg. Chem.* 1990, 29, 2181.
(a) Dodds, A. R.; Kodama, G. *Inorg. Chem.* 1979, 18, 146 E. J.; Garber, A. R.; Odom, J. D.; Ellis, P. D. *Inorg. Chem.* 1975, *14*, 2446. Odom, J. D.; Moore, T. F.; Dawson, W. H.; Garber, A. R.; Stampf, E. J. *Inorg. Chem.* 1979, *18*, 2179. Odom, J. D.; Moore, T. F. *Inorg. Che*

^{&#}x27;Present address: Chemistry Laboratory, Department of Education. Yamagata University, **1-4- I2** Koshirakawa, Yamagata **990,** Japan.

Figure 1. ¹¹**B** \langle ¹H \rangle NMR spectrum (96.2 MHz) of a CH_2Cl_2 solution containing B_5H_{11} and $S(CH_3)_2$ in a 1:1 molar ratio at -95 °C, indicating the formation of B_5H_{11} $S(CH_3)_2$: \bullet signals of B_5H_{11} $S(CH_3)_2$; \Box) signals of B_5H_{11} ; **(m)** B_1 signal of $B_4H_8 \cdot S(CH_3)_2$; **(v)** impurity B_5H_9 .

Table II. Coalescence Temperatures^a of the B_{2-4} Signals^b

	compd	solvent	$T, \,^{\circ}C$	shift, ppm
	$B_4H_8-S(CH_3)$,	$S(CH_2)$	\sim +15	-5.3
	$B_4H_8-S(C_2H_3)$	$S(C,H_2)$	$\sim +45$	-5.4
	$B_4H_8-S(CH_2)_4$	$S(CH_2)_4$	\sim +25	-4.0
	B_4H_8 $P(CH_3)$	$S(CH_3)$	$-+25$	-6.4
	B_4H_8 $P(CH_3)$	$S(CH_2)_4$	$\sim +30$	-6.7
	$B_4H_8\text{-N}$ (CH ₃),	$S(CH_3)$		с
	$B_4H_8 \cdot N(CH_3)$	$S(CH_2)_4$	$\sim +60^4$	-4.0

"he temperature at which the appearance of the signal became single and symmetrical. ^bThe observe frequency; 25.5 MHz. ^cNo coalescence occurred up to +30 **"C.** dThe observe frequency; **96.2 MHz.**

spectrum if two isomers coexist in the solution.

(b) In $S(CH_3)_2$. Below -10 °C, the spectra of $B_4H_8.S(CH_3)_2$ in $S(CH_3)_2$ showed the same three-signal pattern as those in CH_2Cl_2 . However, as the temperature was raised, the B_3 and $B_{2,4}$ signals began to broaden, and at $+20$ °C, the two signals were coalesced. This change was reversible with respect to the temperature variation.

Base-Induced Dynamic Behavior of B₄H₈ Adducts. Apparently, the coalescence of the B_3 and $B_{2,4}$ signals in $SCH_3)$, described above, was due to a rapid internal exchange motion of the **B4-** H_8 **S(CH₃)₂** molecule, which was induced by the solvent $S(CH_3)_2$. Therefore, several other B_4H_8 adducts were tested for the same effect. The results are presented in Table 11. The diethyl sulfide $[S(C_2H_5)_2]$ and tetrahydrothiophene $[S(CH_2)_4]$ adducts of B_4H_8 were prepared by a process which was similar to that employed for the $B_4H_8 \cdot S(CH_3)_2$ preparation. Complete removal of the BH_3 adducts of the respective sulfides from the product mixtures proved difficult to accomplish. Therefore, the coalescence temperatures were determined in the presence of the BH₃ adducts in the sample solutions. The presence of $BH_3·S(CH_3)_2$ in a $S(CH_3)_2$ solution of $B_4H_8 SCH_3$ ₂ did not alter the temperature of the B_3 and $B_{2,4}$ signal coalescence.

Discussion

Decomposition of Dialkyl Sulfide Adducts of B₄H₈ in Dialkyl Sulfides. The dialkyl sulfide adducts of B_4H_8 decompose at room temperature to give a complex mixture of borane compounds. The major components of the decomposition products are **BH3.SR2,** B_6H_{10} , and B_5H_9 . Although the adducts gain stability in dialkyl sulfide solutions, they too undergo slow changes. However, the products are B_5H_9 , B_6H_{10} , and $BH_3·SR_2$, and no other compounds are produced in significant amounts. The rates of formation of these borane compounds are slower by **1** order of magnitude than that of B_5H_9 formation from $B_3H_7SCH_3$, in SCH_3 ₂, which was reported recently.²

The formation of $\dot{\mathbf{B}}_5\mathbf{H}_9$ from $\mathbf{B}_3\mathbf{H}_7\mathbf{\cdot S}(\mathbf{C}\mathbf{H}_3)_2$ was considered to be the result of the cleavage of $B_3H_7SCH_3)_2$ by $S(CH_3)_2$ to form $BH_3 \cdot S(CH_3)_2$ and short-lived " $B_2H_4 \cdot 2S(CH_3)_2$ ", followed by the framework expansion reaction of $B_3H_7S(CH_3)_2$ with $B_2H_4.2S$ -**(CH3)2".2 A** similar interpretation may be used to explain the

Figure 2. Proposed structure for B_5H_{11} $S(CH_3)_2$.

formation of B_5H_9 and B_6H_{10} from the B_4H_8 adducts in alkyl sulfides (SR_2) , as indicated by eqs 5-8. As for the formation B_4H_8 · $SR_2 + 3SR_2 \rightarrow 2^4B_2H_4$ · $2SR_2$ ["] (5)

$$
B_4H_8\text{-SR}_2 + 3SR_2 \to 2^{\mu}B_2H_4\text{-}2SR_2^{\mu} \tag{5}
$$

$$
B_4H_8 \cdot SR_2 + 3SR_2 \rightarrow 2^{\circ}B_2H_4 \cdot 2SR_2^{\circ} \tag{5}
$$

\n
$$
B_4H_8 \cdot SR_2 + {}^{\circ}B_2H_4 \cdot 2SR_2^{\circ} \rightarrow B_3H_9 + BH_3 \cdot SR_2 + 2SR_2 \tag{6}
$$

\n
$$
B_4H_8 \cdot SR_2 + 3SR_2 \rightarrow {}^{\circ}B_3H_5 \cdot 3SR_2^{\circ} + BH_3 \cdot SR_2 \tag{7}
$$

$$
B_4H_8·SR_2 + 3SR_2 \rightarrow \text{``}B_3H_5·3SR_2\text{''} + BH_3·SR_2 \tag{7}
$$

$$
R_2 + 3SR_2 \rightarrow {}^{\omega}B_3H_5 \cdot 3SR_2" + BH_3 \cdot SR_2
$$
 (7)

$$
2^{\omega}B_3H_5 \cdot 3SR_2" \rightarrow B_6H_{10} + 6SR_2
$$
 (8)

of **B6H10,** another type of cleavage (eq **7),** which is followed by the dimerization of $H_3H_5.3SR_2$ " (eq 8), is thought to be responsible.

When $B_4H_8 \cdot P(CH_3)$ ³ is treated with excess $P(CH_3)$ ³, the B_4H_8 moiety is cleaved in two ways, which correspond to eqs **5** and **7,** and $B_2H_4.2P(CH_3)$ ₃, $B_3H_5.3P(CH_3)$ ₃, and $BH_3P(CH_3)$ ₃ are produced.⁶ The cleavage reaction of $\overline{B_4H_8\cdot P(CH_3)}$ is slower than that of $B_3H_7P(CH_3)$, by $P(CH_3)$. Similarly, the cleavage of B_4H_8 SR₂ (eqs 5 and 7) would be slower than that of B_3H_7 SR₂. The B_3H_5 adduct of $P(CH_3)$ ₃ dimerizes to form B_6H_{10} -2 $P(CH_3)$ ₃ when subjected to vacuum at room temperature.⁷ Since dialkyl sulfides are weaker bases than $P(CH_3)_3$, "B₃H₅.3SR₂" would readily dimerize to give B_6H_{10} .

Properties of B_5H_{11} **. S(CH₃)₂.** Recently, the formation of an unstable PH₃ adduct of pentaborane(11), B₅H₁₁·PH₃, was reported.⁸ The NMR signals of the PH₃ adduct appeared at -6.7 , **-39.4,** and **-48.6** ppm in a **3:l:l** intensity ratio, and these signals correspond to the three signals that were found in this work for B_5H_{11} $S(CH_3)_2$ at -4.2 , -19.3 , and -48.8 ppm, respectively. Accordingly, the structure shown in Figure **2** is proposed for the $S(CH_3)_2$ adduct after the proposed structure of $B_5H_{11}PH_3$. The **IlB** shift value for the ligand-bonded boron atom is shifted considerably from -39.4 ppm for B_5H_{11} PH_3 to -19.3 ppm for B_5 - H_{11} -S(CH₃)₂. This large shift difference is consistent with that which was observed between the ¹¹B shift values of BH₃.PH₃ $(-42.8 ~ppm)^9$ and $BH_3 \text{-}S(CH_3)_2$ (-20.2 ppm).¹⁰

Due to the presence of protonic hydrogen atoms on the ligand PH_3 , B_5H_{11} . PH₃ decomposed in a complex manner.⁸ In contrast, further changes of the $B_5H_{11}SCH_3$ ₂ were tractable. That is, as long as $S(CH_3)_2$ was present in the solution, $B_5H_{11} \cdot S(CH_3)_2$ reacted with the $\angle O(H_3)_2$ (eq 3), and when the free $\angle O(H_3)_2$ had been depleted in the solution, the decomposition (eq **4)** occurred.

Base-Induced Dynamic Behaviors. (a) $B_4H_8 \cdot S(CH_3)_2$ in $S(C H_3$)₂. Certain Lewis base adducts of B_4H_8 are known to combine with another molecule of Lewis bases to form bis(base) adducts of B_4H_8 . Thus, reactions $9-12$ have been reported. The B_4H_8
 $B_4H_8 \cdot P[N(CH_3)_2]_3 + P(CH_3)_3 \rightarrow P[NN(G)]_3$

$$
B_4H_8 \cdot P[N(CH_3)_2]_3 \cdot P(CH_3)_3^{4b} (9)
$$

 $B_4H_8 \cdot P(CH_3)_3 + P(CH_3)_3 \rightarrow B_4H_8 \cdot 2P(CH_3)_3^{4b}$ (10)

 $B_4H_8 \cdot P(CH_3)_3 + N(CH_3)_3 \rightleftharpoons B_4H_8 \cdot P(CH_3)_3 \cdot N(CH_3)_3^{4b}$ (11)

 $B_4H_8 \cdot N(CH_3)_3 + N(CH_3)_3 \rightleftharpoons B_4H_8 \cdot 2N(CH_3)_3^{4a}$ (12)

adducts of strong Lewis bases $P[N(CH_3)_2]_3$ and $P(CH_3)_3$ form

(8) Jock, C. P.; Kcdama, *G. Inorg. Chem.* **1988,** *27,* **3431. (9)** Rudolph, R. W.; Parry, R. W.; Farran, **C.** F. *Inorg. Chem.* **1966,5,723.**

^{(6) (}a) Kodama, G.; Kameda, M. *Inorg. Chem.* 1979, 18, 3302. (b) A very
siow reaction of $B_4H_8.2P(CH_3)$, with $P(CH_3)$, was noted in ref 6a. The
products were thought to be $BH_3P(CH_1)$, and $B_2H_4.2P(CH_3)$, Later
work rev

⁽⁷⁾ Kameda, M.; Kodama, *G. Inorg. Chem.* **1980,** *19,* **2288.**

⁽IO) Young, D. E.; McAchran, G. E.; Shore, S. G. *J. Am. Chem. SOC.* **1966, 88, 4390.**

Scheme I

stable bis(base) adducts with the strong Lewis bases (eqs 9 and **IO).** As the participating Lewis bases become weaker, the resulting bis(base) adducts appear to become progressively less stable *(eqs* 11 and 12). Thus, $B_4H_8 \cdot P(CH_3) \cdot N(CH_3)$, dissociates at -30 °C, and $B_4H_8.2N(CH_3)$, is isolable only below -40 °C. The B_4H_8 adduct of the weak base **PH,, B4H8.PH,,** does not form the bis(base) adduct $B_4H_8.2PH_3$.

Dimethyl sulfide is a stronger base that **PH,,** but is a weaker base than N(CH₃)₃. Therefore, the extent of interaction of B_4H_8 ·S(CH₃)₂ with S(CH₃)₂ is expected to be between that of B_4H_8 \cdot **PH₃** with **PH₃** and that of B_4H_8 \cdot **N**(CH₃)₃ with **N**(CH₃)₃. **On** the basis of this base strength consideration, a precess, shown in Scheme **I,** is proposed to explain the observed equivalency of the B_3 and $B_{2,4}$ atoms of the B_4H_8 ·S(CH₃)₂ molecule at the higher temperatures. The proposed process is tantamount to a rapid, endothermic equilibrium, shown by eq 13.

$$
B_4H_8 \cdot S(CH_3)_2 + S(CH_3)_2 \rightleftharpoons \text{H}_4H_8 \cdot 2S(CH_3)_2 \tag{13}
$$

The ease of formation of a bis(base) adduct is influenced by the electrophilicity of the mono(base) adduct and the nucleophilicity of the reacting base. When the dialkyl sulfide **(SR,)** in the reaction (eq 13) is a weaker base than $S(CH_3)_2$, the electrophilicity of the mono(base) adduct $(B_4H_8S R_2)$ would be greater than that of $B_4H_8-S(CH_3)_2$, but this stronger electrophile, **B4H8-SR2,** interacts with the weaker base **SR2** in order to form the bis(adduct) "B₄H₈.2SR₂". Consequently, the order of coalescence temperatures is not necessarily parallel with the order of the base strength of the sulfides. The observed coalescence temperatures increase in the order of $S(CH_3)_2 < S(CH_2)_4$ $S(C_2H_5)_2$. The reported orders of base strength for dialkyl sulfides are $S(CH_3)_2 \approx S(C_2H_5)_2$ > $S(CH_2)_4$ toward BH_3^{11} and $S(CH_3)_2$ $> S(CH_2)_4 > S(C_2H_5)_2$ toward BCI_3 .¹²

Both $\overline{B_4H_8.2P(CH_3)}_3$ and $B_4H_8.2N(CH_3)_3$ are fluxional. The fluxional motion of $\overline{B_4H_8.2P(CH_3)}_3$ is slow at low temperatures on the **NMR** time scale, and therefore the signals of the two phosphine-bonded boron atoms are coalesced only above 0 °C.^{4b} Whereas, the fluxional motion of $B_4H_8.2N(CH_3)$ appears to be fast, the two amine-bonded boron atoms are seen to be equivalent even at -80 °C.¹³ A simple extrapolation of this fluxionality trend to the B_4H_8 adduct of a weaker base, $S(CH_3)_2$, suggests that the same type of fluxional motion for $B_4H_8.2S(CH_3)_2$ " would be faster than that of $B_4H_8.2N(CH_3)_3$. Apparently, however, the equilibrium shown in eq 13 is faster than the fluxional motion, and therefore only the coalescence of the B_3 and $B_{2,4}$ signals is observed. Should the relative rates of these two processes be reversed, the four boron atoms would appear all equivalent. A Lewis base that would bring about such an effect may exist, and is being sought.

(b) $B_4H_8 \cdot P(CH_3)$, in Dialkyl Sulfides. The mechanistic model proposed in (a) above for the equivalency of the B_3 and B_{24} atoms suggests that a similar dynamic behavior may be induced in $B_4H_8 \cdot P(CH_3)$, when it is dissolved in $S(CH_3)_2$. The coalescence is expected to occur at a higher temperature than which was observed for B_4H_8 ·S(CH₃)₂ in S(CH₃)₂, since the electron density on the B_4H_8 moiety would be higher in B_4H_8 . $P(CH_3)$, than in **B4H8.S(CH3)2.** The observed data that are listed in Table **I** are consistent with this conjecture.

Trimethylphosphine-tetraborane(8) exists in two isomeric forms, exo and endo isomers;^{4b} the ¹¹B NMR spectrum of B₄-H₈.P(CH₃)₃ consists of two sets of signals. In the spectrum, although the B_1 and $B_{2,4}$ signals of the two isomers are severely overlapped, the **B,** signals of the two isomers appear separated from each other at -1.8 and $+5.1$ ppm. The population ratio of the two isomers is approximately **4:1** at **20 'C.** At present, no evidence is available to decide which one of the exo and endo isomers is the more abundant species. Interestingly, the B_3 signal of the minor isomer at $+5.1$ ppm remained unchanged while the **B₃** and **B**_{2,4} signals of the major isomer coalesced. The uncoalesced **B2.4** signal of the minor isomer could not be identified clearly due to its overlap with the coalesced signal of the major isomer.

(c) $B_4H_8 \cdot N(CH_3)$, in Dialkyl Sulfides. Since $N(CH_3)$, is a weaker base than $P(CH_3)_3$, the B_3 and $B_{2,4}$ atom sites of the B₄H₈·N(CH₃)₃ molecule are expected to be more reactive toward nucleophiles than the corresponding sites in $B_4H_8 \cdot P(CH_3)_3$. Therefore, $B_4H_8 \cdot N(CH_3)$, dissolved in dialkyl sulfides was expected to show the coalescence of the B_3 and $B_{2,4}$ signals at temperatures lower than those for $B_4H_8 \cdot P(CH_3)_3$. Contrary to this expectation, the coalescence did not occur even when the solutions were heated to the temperatures of the $B_4H_8 \cdot P(CH_3)$, coalescence. Instead, when the tetrahydrothiophene solution of $B_4H_8(N(CH_3)_3)$ was further heated to about +60 **'C,** a new signal appeared at -4.0 ppm in the spectrum of $B_4H_8 \cdot N(CH_3)_3$ (see Figure 3). This change is reversible with respect to the temperature variation.

Currently, no unequivocal explanation can be offered for the different behavior of $B_4H_8 N(CH_3)$, in the dialkyl sulfides. However, the noncoalescence that was observed for one of the B₄H₈·P(CH₃)₃ isomers may be related to the observed behavior of $B_4H_8 \cdot N(CH_3)$. That is, the trimethylamine adduct, which appears to exist in only one isomeric form at **+20 'C,** may have the same conformation as the inactive (or minor) isomer of **B4H8.P(CH3),.** As the temperature is increased, the other isomer of $B_4H_8(N(CH_3)_3$ is produced in the solution by a slow equilibrium, and its already coalesced B_{2-4} signal appears at -4.0 ppm. Hopefully, the results of X-ray structural studies of these **B4Hs** adducts, which are being initiated, will provide a clearer answer.¹⁴

Experimental Section

Chemicals and Equipment. Conventional vacuum-like techniques were used throughout for the handling of **volatile, air-sensitive compounds. Dimethyl and diethyl sulfides and tetrahydrothiophene (Kodak Laboratory and Research Products) were refluxed and distilled** over **calcium hydride and stored over molecular sieves. Laboratory stock penta**borane(11),^{4a} trimethylphosphine,^{4b} trimethylamine,³ and dichloro**methane4b were used. A Varian FT-80A NMR spectrometer was used routinely** for **the** I'B **NMR spectral acquisitions unless otherwise stated.**

⁽I I) **Coyle, T. D.; Kaesz. H. D.; Stone, F. G. A.** *J. Am. Chem. SOC.* **1959,** *81,* **2089.**

⁽¹²⁾ Morris, H. L.; Kulevsky, N. I.:Tamres, M.; Searles, S., Jr. *Inorg. Chem.* **1966,** *5,* **124.**

⁽¹³⁾ The $\frac{16}{10}$ ($\frac{16}{10}$) (96.2 MHz) NMR spectrum of B₄H₈-2N(CH₃)₃ in N(C-
H₃)₃ at -80 °C showed two clearly separated signals at -9.0 and -13.3 **ppm (uncorrected) in a 1:l intensity ratio. The details will be reported elsewhere along with other related observations.**

⁽¹⁴⁾ In the B₄H₉⁻ ion, the endo B₁-H hydrogen atom appears to undergo a rapid tautomeric motion while the exo B₁-H bond is rigid.¹³ Accordingly, in Scheme I, the exo isomer of the B_4H_8 adduct is chosen to be the species that undergoes the rapid motion. However, this choice is
by no means definitive. **by** no means definitive.

⁽¹ 5) Remrnel, R. J.; Johnson, H D., 11; Jaworiwsky, 1. S.; Shore, *S.* **G.** *J. Am. Chem. SOC.* **1975,** *97,* **5395.**

Figure 3. Portion of the ${}^{11}B({}^{1}H)$ NMR spectrum (96.2 MHz) of B_4 - $H_8 \cdot N(CH_3)$, showing the growth of the -4.0 ppm signal at the higher temperatures.

The diethyl etherate of boron trifluoride was used as the external standard for the ¹¹B shift values.

Isolation of B_4H_8 **·S(CH₃)₂.** A 0.453-mmol sample of B_5H_{11} was taken in a 9 mm 0.d. Pyrex tube equipped with a Teflon valve and was dissolved in about a 2-mL sample of CH₂Cl₂. The solution was frozen at -197 °C, and a 0.983-mmol sample of $S(CH_3)_2$ was condensed into the tube. The tube was placed in a -80 \degree C bath, shaken to mix the contents thoroughly, and then placed in the cooled probe of the NMR spectrometer. The ¹¹B NMR spectrum of the solution contained only the signals of $BH₃·S(C H_3$)₂ and B_4H_8 ·S(CH₃)₂.

The tube was then placed in a -23 °C bath, and the volatile components were pumped out from the tube through a -63 °C trap into a -197 ^oC trap. From time to time, the liquid residue in the reaction tube was dissolved in a fresh, small portion of CH_2Cl_2 to record the ¹¹B NMR spectrum of the solution at -30 °C. A total pumping time of 30 h was required to remove BH₃·S(CH₃)₂ completely from the product mixture.
When the CH₂Cl₂ solution containing pure B₄H₈·S(CH₃)₂ was kept at room temperature for a few minutes, the signal of $BH₃$ S(CH₃)₂ became detectable.

Formation of B_SH₁₁.S(CH₃)₂. A 0.150-mmol sample of B_SH₁₁ was taken in a 14 mm 0.d. Pyrex tube equipped with a vertical-shape Teflon valve (VNMR valve, product of J. Young Scientific Glassware) and was dissolved in a 2.0-mL sample of CH_2Cl_2 . Then, the tube was placed in a -95 °C bath, and a 0.160-mmol sample of $S(CH_3)_2$ was slowly introduced over the B_5H_{11} solution, during which the solution was constantly agitated by shaking the tube in the bath. Then, the tube was inserted into the probe of a Varian XL-300 NMR spectrometer. The probe had been cooled to -100 °C prior to the insertion of the reaction tube. The spectrum obtained at -95 °C is shown in Figure 1. The probe temperature was increased to -80 \degree C and then to -60 \degree C in a stepwise fashion to record the spectra of the solution.

Sample Solutions for the Variable-Temperature NMR Studies. **(a)** B_4H_8 S(CH₃)₂. The sample of B_4H_8 S(CH₃)₂, which was prepared as described earlier in this section, was dissolved in a 2-mL sample of S-
(CH₃)₂. In a separate experiment, a 0.451 mmol sample of B_5H_{11} was dissolved in a 2-mL sample of $S(CH_3)_2$ at -80 °C. The formation of $B_4H_8-S(CH_3)_2$ and $BH_3-S(CH_3)_2$ was complete at this temperature. The B_4H_8 . $S(CH_3)$, signals of these two solutions showed identical changes with respect to the temperature variation.

(b) $B_4H_8 \cdot S(C_2H_5)_2$ and $B_4H_8 \cdot S(CH_2)_4$. The sample solution of B_4 - H_8 ·S(C_2H_5)₂ was prepared in a 9 mm o.d. Pyrex tube by dissolving a 0.573-mmol sample of B_5H_{11} in a 2-mL sample of $S(C_2H_5)_2$ at -80 °C and raising the temperature slowly to -60° C. The sample solution of B_4H_8 S(CH₂)₄ was prepared similarly by dissolving a 0.516-mmol sample of B_5H_{11} in a 2-mL sample of $S(CH_2)_4$.

(c) $\mathbf{B}_4\mathbf{H}_8\text{-P}(\mathbf{C}\mathbf{H}_3)$, A 0.51-mmol sample of $\mathbf{B}_4\mathbf{H}_8\text{-P}(\mathbf{C}\mathbf{H}_3)$, prepared in a 9 mm o.d. Pyrex tube by treating $B_4H_8.2P(CH_3)$, with B_2H_6 ^{4b} was dissolved in a 1.5-mL sample of $S(\overrightarrow{CH_3})_2$. Another 0.52-mmol sample of B_4H_8 -P(CH₃)₃, which was similarly prepared, was dissolved in a 2-mL sample of $S(CH₂)₄$.

(d) B_4H_8 N(CH₃)₃. A 0.68-mmol sample of B_4H_8 N(CH₃)₃, prepared in a 9 mm o.d. Pyrex tube by the literature method,⁴⁴ was dissolved in a 1.5-mL sample of $S(CH_3)_2$. After the completion of the measurements, the solvent $SCH_3)_2$ was pumped out completely from the tube, and the remaining $B_4H_8 \cdot N(CH_3)$, was dissolved in a 1.7-mL sample of $S(CH_2)_4$.

The ¹¹B NMR spectra of these sample solutions were recorded on the FT-80A spectrometer. The spectra of the $S(CH_2)_4$ solution of B_4H_8 . N(CH3), were also recorded on a Varian XL-300 spectrometer, so that the high-temperature signal at -4.0 ppm could be observed well-separated from the B_3 and $B_{2,4}$ signals, as shown in Figure 3. At +60 °C, decompositions of $B_4H_8 N\tilde{(CH_3)}$, proceeded at an appreciable rate. However, the **appearance-disappearance** of the -4.0 ppm signal was reversible with respect to the temperature variation.

Acknowledgment. We gratefully acknowledge the support of this work by the **US.** Army Research Office through Grant DAAG 29-85-K-0034.

Contribution from the Departments of Chemistry, Rensselaer Polytechnic Institute, Troy, New **York** 12180, and King's College, Wilkes-Barre, Pennsylvania 187 11

Me3AI*NH3 Formation and Pyrolytic Methane Loss: Thermodynamics, Kinetics, and Mechanism

Frederick C. Sauls,^{*,1a} Leonard V. Interrante,*,^{1b} and Zhiping Jiang^{1b}

Received December 14, 1989

The thermodynamics, kinetics, and mechanism of the reactions $Me₃Al + NH₃ \rightarrow Me₃AlNH₃ \rightarrow 1/3(Me₂AlNH₂)₃ + CH₄ in$ homogeneous solution were investigated by solution calorimetry, DSC, and 'H NMR rate measurements. The enthalpy for complex formation from NH₃ and monomeric Me₃Al in benzene was -93 kJ/mol. The observed ΔH for methane loss from the complex was -82.2 kcal/mol. Methane loss from Me₃Al·NH₃ in equilibrium with $(Me_2AINH_2)_2$ and $(Me_2AINH_2)_3$. A mechanism for the Me₂AlNH₂-catalyzed reaction involving formation of the methyl-bridged intermediate $(\mu$ -Me)(Me₂AINH₂)(Me₂Al-NH₃) and subsequent loss of CH₄ by proton transfer was proposed. The enthalpy of activation for the autocatalytic reaction was 92.8 kJ/mol. A deuterium isotope effect of 8.8 was measured for this reaction. **A** similar mechanism was proposed for the Me,Al-catalyzed reaction, involving formation of an analogous methyl-bridged species (μ -Me)(Me₃Al)(Me₂Al-NH₃), which apparently loses CH₄ and closes to metastable (μ -NH₂)(μ -Me)Al₂Me₄. This slowly disproportionates to $(Me_3A1)_2$ and $(Me_2A1NH_2)_3$; the autocatalytic path is thus slowed. ΔH^* , for the Me₃Al-catalyzed pathway was I13 kJ/mol. The deuterium isotope effect was 5.5.

Introduction

A general route to nonoxide ceramic materials is the pyrolytic decomposition of a suitable organometallic precursor. While this