## Formation and Properties of Dimethyl Sulfide–Tetraborane(8). Base-Induced Dynamic Behavior of Tetraborane(8) Adducts

Minoru Ishii<sup>†</sup> and Goji Kodama\*

Received January 5, 1990

Dimethyl sulfide-tetraborane(8)  $[B_4H_8:S(CH_3)_2]$  was produced from the reaction of  $B_5H_{11}$  with  $S(CH_3)_2$  and was isolated as a liquid at -23 °C. The compound was unstable at room temperature but showed an increased stability in S(CH<sub>3</sub>)<sub>2</sub>. An unstable adduct  $B_5H_{11}$  S(CH<sub>3</sub>)<sub>2</sub> was identified at -95 °C as a precursor of  $B_4H_8$  S(CH<sub>3</sub>)<sub>2</sub>. The <sup>11</sup>B NMR spectra of  $B_4H_8$  S(CH<sub>3</sub>)<sub>2</sub> in S(CH<sub>3</sub>)<sub>2</sub> showed that the B<sub>3</sub> and B<sub>2,4</sub> signals were coalesced at room temperature, indicating that a rapid internal exchange motion was induced by the solvent  $S(CH_3)_2$ . The diethyl sulfide, tetrahydrothiophene, and trimethylphosphine adducts of  $B_4H_8$  showed the same coalescence in alkyl sulfides at higher temperatures. A possible mechanism was proposed for the induced dynamic behavior of these  $B_4H_8$  adducts. The  $B_3$  and  $B_{2,4}$  signals of  $B_4H_8$  N(CH<sub>3</sub>)<sub>3</sub> did not coalesce when the adduct was dissolved in dialkyl sulfides. The position of the ligand (exo or endo) with respect to the bent B<sub>4</sub>H<sub>8</sub> framework might be responsible for the different behavior of the amine adduct.

#### Introduction

The reaction of pentaborane(11) with dimethyl sulfide was known to produce dimethyl sulfide-tetraborane(8)  $[B_4H_8 \cdot S(CH_3)_2;$ shown in the following diagram].<sup>1</sup>



However, the compound had not been isolated. Recently, dimethyl sulfide-triborane(7),  $B_3H_7$  S(CH<sub>3</sub>)<sub>2</sub>, was isolated and was found to be a liquid that was stable at room temperature.<sup>2</sup> This triborane adduct underwent a slow change to form pentaborane(9) and  $BH_3 \cdot S(CH_3)_2$  when dissolved in dimethyl sulfide.<sup>2</sup> Furthermore, it underwent a facile cleavage reaction with trimethylamine at -80 °C to give  $B_2H_4 \cdot 2N(CH_3)_3$  and  $BH_3 \cdot N(CH_3)_3$ .<sup>3</sup> These interesting findings, which followed the isolation of  $B_3H_7$ -S(CH<sub>3</sub>)<sub>2</sub>, prompted us to undertake a similar investigation for the dimethyl sulfide adduct of  $B_4H_8$ . The results are reported in this paper.

#### Results

Formation and Isolation of  $B_4H_8 \cdot S(CH_3)_2$ . When pentaborane(11) and excess  $S(CH_3)_2$  were mixed in dichloromethane at -80 °C, B<sub>4</sub>H<sub>8</sub>·S(CH<sub>3</sub>)<sub>2</sub> formed immediately according to

$$B_5H_{11} + 2S(CH_3)_2 \rightarrow B_4H_8 \cdot S(CH_3)_2 + BH_3 \cdot S(CH_3)_2 \qquad (1)$$

The  $B_4H_8$  adduct was isolated as a colorless liquid by pumping out the solvent and  $BH_3 \cdot S(CH_3)_2$  from the reaction mixture at -23 °C. This tetraborane(8) adduct was unstable at room temperature. However, the compound appeared to be more stable when placed in dimethyl sulfide; a solution of  $B_4H_8$  S(CH<sub>3</sub>)<sub>2</sub> in  $S(CH_3)_2$  did not show any change at all when it was kept standing at room temperature for 1 h.

The formation of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub> from  $B_5H_{11}$  and S(CH<sub>3</sub>)<sub>2</sub> (eq 1) was preceded by the formation of an unstable 1:1 adduct,  $B_5H_{11}$ -S(CH<sub>3</sub>)<sub>2</sub>. This precursor was characterized by its <sup>11</sup>B NMR signals at -4.2, -19.3, and -48.8 ppm with an intensity ratio of 3:1:1. Although a mixture of  $B_5H_{11}$  and  $S(CH_3)_2$  in a 1:2 or 1:excess (>2) molar ratio produced B<sub>4</sub>H<sub>8</sub>·S(CH<sub>3</sub>)<sub>2</sub> and BH<sub>3</sub>·  $S(CH_3)_2$  instantaneously at -80 °C, the signals of  $B_5\dot{H}_{11}$ · $S(CH_3)_2$ were detectable at -95 °C along with the signals of the other products. On the other hand, if a *l*-equiv quantity of  $S(CH_3)_2$ was added *slowly* into a *dilute* solution of  $B_5H_{11}$  in  $CH_2Cl_2$  at -95 °C while the solution was constantly agitated, the signals of

Table I. <sup>11</sup>B NMR Data for Dialkyl Sulfide-Tetraborane(8) Adducts and Related Borane Adducts

| <u></u>                                                         |                                                    | Τ.         | shift, ppm     |                  | BH                    | shift.                                                 |       |
|-----------------------------------------------------------------|----------------------------------------------------|------------|----------------|------------------|-----------------------|--------------------------------------------------------|-------|
| compd                                                           | solvent                                            | °Ċ         | Bı             | B <sub>2,4</sub> | <b>B</b> <sub>3</sub> | adduct                                                 | ppm   |
| B <sub>4</sub> H <sub>8</sub> ·S(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>2</sub> Cl <sub>2</sub>                    | +20        | -33.6          | -7.6             | +1.8                  |                                                        |       |
| B <sub>4</sub> H <sub>8</sub> ·S(CH <sub>3</sub> ) <sub>2</sub> | S(CH <sub>3</sub> ) <sub>2</sub>                   | -80        | -34.2          | -6.9             | +1.8                  | BH <sub>3'</sub> S-<br>(CH <sub>3</sub> ) <sub>2</sub> | -22.1 |
| $B_4H_8 \cdot S(C_2H_5)_2$                                      | $S(C_2H_5)_2$                                      | -60        | -36.8          | -7.0             | +1.3                  | $BH_{3'}S-$<br>(C <sub>2</sub> H <sub>5</sub> ),       | -24.3 |
| B <sub>4</sub> H <sub>8</sub> ·S(CH <sub>2</sub> ) <sub>4</sub> | S(CH <sub>2</sub> ) <sub>4</sub>                   | -60        | -33.5          | -7.1             | +1.7                  | BH <sub>3</sub> -S-<br>(CH <sub>2</sub> ) <sub>4</sub> | -21.6 |
| $B_4H_8 \cdot P(CH_3)_3^a B_4H_8 \cdot N(CH_3)_3^b$             | $\begin{array}{c} CH_2Cl_2\\ CH_2Cl_2 \end{array}$ | +25<br>+25 | -51.5<br>-22.5 | -7.0<br>-8.5     | -1.8<br>+1.1          |                                                        |       |

<sup>a</sup>Reference 4b. <sup>b</sup>Reference 4a.

the 1:1 adduct were observed clearly along with the signals of  $B_5H_{11}$ , as shown in Figure 1. The compound decomposed slowly at -90 °C to form  $B_4H_8$  S(CH<sub>3</sub>)<sub>2</sub>. At -60 °C, the decomposition was fast; the  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub> signals became intense, and the signal of  $B_2H_6$  appeared. These reactions are summarized by the equations

$$B_5H_{11} + S(CH_3)_2 \xrightarrow{\text{below } -95 \, ^\circ C_1}_{\text{in } CH_2Cl_2} B_5H_{11} \cdot S(CH_3)_2 \qquad (2)$$

 $B_{5}H_{11} \cdot S(CH_{3})_{2} + S(CH_{3})_{2} \xrightarrow{above -90 \ ^{\circ}C}{in \ CH_{2}Cl_{2}} B_{4}H_{8} \cdot S(CH_{3})_{2} + BH_{3} \cdot S(CH_{3})_{2} (3)$ 

$$B_5H_{11} \cdot S(CH_3)_2 \xrightarrow{above -90 \circ C} B_4H_8 \cdot S(CH_3)_2 + \frac{1}{2}B_2H_6$$
 (4)

<sup>11</sup>B NMR Spectra of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub>. (a) In CH<sub>2</sub>Cl<sub>2</sub>. The <sup>11</sup>B NMR data are listed in Table I. The assignment for the signals of  $B_4H_8S(CH_3)_2$  was made with reference to the spectra of known  $B_4H_8$  adducts.<sup>4,5</sup> The pattern of the spectrum remained unchanged in the temperature range from -80 to +20 °C. Unlike some of the adducts of  $B_4H_8$ ,<sup>4b,5</sup> this compound appeared to exist in only one isomeric form (exo or endo form according to the position of the ligand with respect to the hinge-shaped structure of the  $B_4$  framework); that is, only one  $B_3$  signal could be seen. The B<sub>3</sub> signals of the two isomers usually appear separated in the

- (1)
- (2)
- (3)
- (4)
- Kodama, G.; Saturnino, D. J. Inorg. Chem. 1975, 14, 2243.
  Ishii, M.; Kodama, G. Inorg. Chem. 1990, 29, 817.
  Ishii, M.; Kodama, G. Inorg. Chem. 1990, 29, 2181.
  (a) Dodds, A. R.; Kodama, G. Inorg. Chem. 1979, 18, 1465. (b)
  Kameda, M.; Shimoi, M.; Kodama, G. Inorg. Chem. 1979, 18, 1465. (c)
  Kameda, M.; Shimoi, M.; Kodama, G. Inorg. Chem. 1984, 23, 3705.
  Centofanti, L. F.; Kodama, G.; Parry, R. W. Inorg. Chem. 1969, 8, 2072.
  Paine, R. T.; Parry, R. W. Inorg. Chem. 1972, 11, 1237.
  Stampf, E. J.; Garber, A. R.; Odom, J. D.; Ellis, P. D. Inorg. Chem. 1975, 14, 2446.
  Odom, J. D.; Moore, T. F.; Dawson, W. H.; Garber, A. R.; Stampf, E. J. Inorg. Chem. 1979, 18, 2179.
  Odom, J. D.; Moore, T. F. Inorg. Chem. 1980, 19, 2651.
  Odom, J. D.; Zozulin, A. J. Inorg. Chem. 1981, 20, 3740.

<sup>\*</sup> Present address: Chemistry Laboratory, Department of Education, Yamagata University, 1-4-12 Koshirakawa, Yamagata 990, Japan.



Figure 1. <sup>11</sup>B $\langle$ <sup>1</sup>H $\rangle$  NMR spectrum (96.2 MHz) of a CH<sub>2</sub>Cl<sub>2</sub> solution containing B<sub>5</sub>H<sub>11</sub> and S(CH<sub>3</sub>)<sub>2</sub> in a 1:1 molar ratio at -95 °C, indicating the formation of  $B_5H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>: ( $\bullet$ ) signals of  $B_5H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>; ( $\Box$ ) signals of  $B_5H_{11}$ ; (**I**)  $B_1$  signal of  $B_4H_8 \cdot S(CH_3)_2$ ; (**V**) impurity  $B_5H_9$ .

Table II. Coalescence Temperatures<sup>a</sup> of the B<sub>2-4</sub> Signals<sup>b</sup>

| 1 |                            |                                  |                |            |  |
|---|----------------------------|----------------------------------|----------------|------------|--|
|   | compd                      | solvent                          | <i>T</i> , ⁰C  | shift, ppm |  |
|   | $B_4H_8 \cdot S(CH_3)_2$   | S(CH <sub>3</sub> ) <sub>2</sub> | ~+15           | -5.3       |  |
|   | $B_4H_8 \cdot S(C_2H_5)_2$ | $S(C_2H_5)_2$                    | ~+45           | -5.4       |  |
|   | $B_4H_8 \cdot S(CH_2)_4$   | $S(CH_2)_4$                      | ~+25           | -4.0       |  |
|   | $B_4H_8 \cdot P(CH_3)_3$   | $S(CH_3)_2$                      | ~+25           | -6.4       |  |
|   | $B_4H_8 \cdot P(CH_3)_3$   | $S(CH_2)_4$                      | ~+30           | -6.7       |  |
|   | $B_4H_8 \cdot N(CH_3)_3$   | $S(CH_3)_2$                      | С              | с          |  |
|   | $B_4H_8 \cdot N(CH_3)_3$   | $S(CH_2)_4$                      | $\sim +60^{d}$ | -4.0       |  |
|   |                            |                                  |                |            |  |

"The temperature at which the appearance of the signal became single and symmetrical. <sup>b</sup>The observe frequency; 25.5 MHz. <sup>c</sup>No coalescence occurred up to +30 °C. d'The observe frequency; 96.2 MHz.

spectrum if two isomers coexist in the solution.

(b) In S(CH<sub>3</sub>)<sub>2</sub>. Below -10 °C, the spectra of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub> in  $S(CH_3)_2$  showed the same three-signal pattern as those in  $CH_2Cl_2$ . However, as the temperature was raised, the B<sub>3</sub> and B<sub>2.4</sub> signals began to broaden, and at +20 °C, the two signals were coalesced. This change was reversible with respect to the temperature variation.

Base-Induced Dynamic Behavior of B<sub>4</sub>H<sub>8</sub> Adducts. Apparently, the coalescence of the  $B_3$  and  $B_{2,4}$  signals in  $S(CH_3)_2$ , described above, was due to a rapid internal exchange motion of the B<sub>4</sub>- $H_8 \cdot S(CH_3)_2$  molecule, which was induced by the solvent  $S(CH_3)_2$ . Therefore, several other  $B_4H_8$  adducts were tested for the same effect. The results are presented in Table II. The diethyl sulfide  $[S(C_2H_5)_2]$  and tetrahydrothiophene  $[S(CH_2)_4]$  adducts of  $B_4H_8$ were prepared by a process which was similar to that employed for the  $B_4H_8$   $S(CH_3)_2$  preparation. Complete removal of the  $BH_3$ adducts of the respective sulfides from the product mixtures proved difficult to accomplish. Therefore, the coalescence temperatures were determined in the presence of the BH<sub>3</sub> adducts in the sample solutions. The presence of  $BH_3 \cdot S(CH_3)_2$  in a  $S(CH_3)_2$  solution of  $B_4H_8 \cdot S(CH_3)_2$  did not alter the temperature of the  $B_3$  and  $B_{2,4}$ signal coalescence.

#### Discussion

Decomposition of Dialkyl Sulfide Adducts of B<sub>4</sub>H<sub>8</sub> in Dialkyl Sulfides. The dialkyl sulfide adducts of  $B_4H_8$  decompose at room temperature to give a complex mixture of borane compounds. The major components of the decomposition products are BH<sub>3</sub>·SR<sub>2</sub>,  $B_6H_{10}$ , and  $B_5H_9$ . Although the adducts gain stability in dialkyl sulfide solutions, they too undergo slow changes. However, the products are  $B_5H_9$ ,  $B_6H_{10}$ , and  $BH_3$ -SR<sub>2</sub>, and no other compounds are produced in significant amounts. The rates of formation of these borane compounds are slower by 1 order of magnitude than that of  $B_5H_9$  formation from  $B_3H_7$ ·S(CH<sub>3</sub>)<sub>2</sub> in S(CH<sub>3</sub>)<sub>2</sub>, which was reported recently.<sup>2</sup>

The formation of  $B_5H_9$  from  $B_3H_7$ ·S(CH<sub>3</sub>)<sub>2</sub> was considered to be the result of the cleavage of  $B_3H_7S(CH_3)_2$  by  $S(CH_3)_2$  to form  $BH_3 \cdot S(CH_3)_2$  and short-lived " $B_2H_4 \cdot 2S(CH_3)_2$ ", followed by the framework expansion reaction of  $B_3H_7 \cdot S(CH_3)_2$  with " $B_2H_4 \cdot 2S$ - $(CH_3)_2$ ".<sup>2</sup> A similar interpretation may be used to explain the



Figure 2. Proposed structure for  $B_5H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>.

formation of  $B_5H_9$  and  $B_6H_{10}$  from the  $B_4H_8$  adducts in alkyl sulfides  $(SR_2)$ , as indicated by eqs 5-8. As for the formation

$$B_4H_8 \cdot SR_2 + 3SR_2 \rightarrow 2^{*}B_2H_4 \cdot 2SR_2^{*}$$
(5)

$$B_4H_8 \cdot SR_2 + B_2H_4 \cdot 2SR_2 \rightarrow B_5H_9 + BH_3 \cdot SR_2 + 2SR_2$$
 (6)

$$B_4H_8 \cdot SR_2 + 3SR_2 \rightarrow "B_3H_5 \cdot 3SR_2" + BH_3 \cdot SR_2 \qquad (7)$$

$$2^{*}B_{3}H_{5}\cdot 3SR_{2}^{*} \to B_{6}H_{10} + 6SR_{2}$$
 (8)

of  $B_6H_{10}$ , another type of cleavage (eq 7), which is followed by the dimerization of "B<sub>3</sub>H<sub>5</sub>.3SR<sub>2</sub>" (eq 8), is thought to be responsible.

When  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub> is treated with excess P(CH<sub>3</sub>)<sub>3</sub>, the  $B_4H_8$ moiety is cleaved in two ways, which correspond to eqs 5 and 7, and  $B_2H_4 \cdot 2P(CH_3)_3$ ,  $B_3H_5 \cdot 3P(CH_3)_3$ , and  $BH_3 \cdot P(CH_3)_3$  are produced.<sup>6</sup> The cleavage reaction of  $B_4H_8 \cdot P(CH_3)_3$  is slower than that of  $B_3H_7$ ,  $P(CH_3)_3$  by  $P(CH_3)_3$ . Similarly, the cleavage of  $B_4H_8$ ,  $SR_2$  (eqs 5 and 7) would be slower than that of  $B_3H_7$ ,  $SR_2$ . The  $B_3H_5$  adduct of  $P(CH_3)_3$  dimerizes to form  $B_6H_{10}\cdot 2P(CH_3)_3$ when subjected to vacuum at room temperature.<sup>7</sup> Since dialkyl sulfides are weaker bases than P(CH<sub>3</sub>)<sub>3</sub>, "B<sub>3</sub>H<sub>5</sub>·3SR<sub>2</sub>" would readily dimerize to give  $B_6H_{10}$ .

Properties of  $B_5H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>. Recently, the formation of an unstable PH<sub>3</sub> adduct of pentaborane(11), B<sub>5</sub>H<sub>11</sub>·PH<sub>3</sub>, was reported.<sup>8</sup> The NMR signals of the PH<sub>3</sub> adduct appeared at -6.7, -39.4, and -48.6 ppm in a 3:1:1 intensity ratio, and these signals correspond to the three signals that were found in this work for  $B_5H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub> at -4.2, -19.3, and -48.8 ppm, respectively. Accordingly, the structure shown in Figure 2 is proposed for the  $S(CH_3)_2$  adduct after the proposed structure of  $B_5H_{11}$ ·PH<sub>3</sub>. The <sup>11</sup>B shift value for the ligand-bonded boron atom is shifted considerably from -39.4 ppm for B<sub>5</sub>H<sub>11</sub>·PH<sub>3</sub> to -19.3 ppm for B<sub>5</sub>- $H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>. This large shift difference is consistent with that which was observed between the <sup>11</sup>B shift values of BH<sub>3</sub>·PH<sub>3</sub> (-42.8 ppm)<sup>9</sup> and BH<sub>3</sub>·S(CH<sub>3</sub>)<sub>2</sub> (-20.2 ppm).<sup>10</sup>

Due to the presence of protonic hydrogen atoms on the ligand PH<sub>3</sub>, B<sub>5</sub>H<sub>11</sub>·PH<sub>3</sub> decomposed in a complex manner.<sup>8</sup> In contrast, further changes of the  $B_5H_{11}$  S(CH<sub>3</sub>)<sub>2</sub> were tractable. That is, as long as  $S(CH_3)_2$  was present in the solution,  $B_5H_{11} \cdot S(CH_3)_2$ reacted with the  $S(CH_3)_2$  (eq 3), and when the free  $S(CH_3)_2$  had been depleted in the solution, the decomposition (eq 4) occurred.

Base-Induced Dynamic Behaviors. (a)  $B_4H_8 \cdot S(CH_3)_2$  in S(C- $H_3$ )<sub>2</sub>. Certain Lewis base adducts of  $B_4H_8$  are known to combine with another molecule of Lewis bases to form bis(base) adducts of  $B_4H_8$ . Thus, reactions 9-12 have been reported. The  $B_4H_8$  $B_4H_8 \cdot P[N(CH_3)_2]_3 + P(CH_3)_3 \rightarrow$ 

$$B_4H_8 \cdot P[N(CH_3)_2]_3 \cdot P(CH_3)_3^{4b}$$
 (9)

 $B_4H_8 \cdot P(CH_3)_3 + P(CH_3)_3 \rightarrow B_4H_8 \cdot 2P(CH_3)_3^{4b}$ (10)

 $B_4H_8 \cdot P(CH_3)_3 + N(CH_3)_3 \rightleftharpoons B_4H_8 \cdot P(CH_3)_3 \cdot N(CH_3)_3^{4b} (11)$ 

 $B_4H_8 \cdot N(CH_3)_3 + N(CH_3)_3 \Longrightarrow B_4H_8 \cdot 2N(CH_3)_3^{4a}$  (12)

adducts of strong Lewis bases P[N(CH<sub>3</sub>)<sub>2</sub>]<sub>3</sub> and P(CH<sub>3</sub>)<sub>3</sub> form

(9)

<sup>(</sup>a) Kodama, G.; Kameda, M. Inorg. Chem. 1979, 18, 3302. (b) A very slow reaction of  $B_4H_8$ ·2P(CH<sub>3</sub>)<sub>3</sub> with P(CH<sub>3</sub>)<sub>3</sub> was noted in ref 6a. The products were thought to be BH<sub>3</sub>·P(CH<sub>3</sub>)<sub>3</sub> and  $B_2H_4$ ·2P(CH<sub>3</sub>)<sub>3</sub>. Later work revealed that the products contained  $B_3H_3$ ·3P(CH<sub>3</sub>)<sub>3</sub> also: Kameda, M.; Kodama, G. Inorg. Chem., submitted for publication. Kameda, M.; Kodama, G. Inorg. Chem. 1980, 19, 2288. Jock, C. P.; Kodama, G. Inorg. Chem. 1988, 27, 3431. Rudolph, R. W.; Parry, R. W.; Farran, C. F. Inorg. Chem. 1966, 5, 723. Young, D. E.; McAchran, G. E.; Shore, S. G. J. Am. Chem. Soc. 1966. (6)

<sup>(8)</sup> 

Young, D. E.; McAchran, G. E.; Shore, S. G. J. Am. Chem. Soc. 1966, 88, 4390. (10)

Scheme I



stable bis(base) adducts with the strong Lewis bases (eqs 9 and 10). As the participating Lewis bases become weaker, the resulting bis(base) adducts appear to become progressively less stable (eqs 11 and 12). Thus,  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub>·N(CH<sub>3</sub>)<sub>3</sub> dissociates at -30 °C, and  $B_4H_8$ ·2N(CH<sub>3</sub>)<sub>3</sub> is isolable only below -40 °C. The  $B_4H_8$  adduct of the weak base PH<sub>3</sub>,  $B_4H_8$ ·PH<sub>3</sub>, does not form the bis(base) adduct  $B_4H_8$ ·2PH<sub>3</sub>.<sup>8</sup>

Dimethyl sulfide is a stronger base that PH<sub>3</sub>, but is a weaker base than  $N(CH_3)_3$ . Therefore, the extent of interaction of  $B_4H_8 \cdot S(CH_3)_2$  with  $S(CH_3)_2$  is expected to be between that of  $B_4H_8 \cdot PH_3$  with PH<sub>3</sub> and that of  $B_4H_8 \cdot N(CH_3)_3$  with  $N(CH_3)_3$ . On the basis of this base strength consideration, a process, shown in Scheme I, is proposed to explain the observed equivalency of the  $B_3$  and  $B_{2,4}$  atoms of the  $B_4H_8 \cdot S(CH_3)_2$  molecule at the higher temperatures. The proposed process is tantamount to a rapid, endothermic equilibrium, shown by eq 13.

$$B_4H_8 \cdot S(CH_3)_2 + S(CH_3)_2 \rightleftharpoons B_4H_8 \cdot 2S(CH_3)_2$$
" (13)

The ease of formation of a bis(base) adduct is influenced by the electrophilicity of the mono(base) adduct and the nucleophilicity of the reacting base. When the dialkyl sulfide (SR<sub>2</sub>) in the reaction (eq 13) is a weaker base than S(CH<sub>3</sub>)<sub>2</sub>, the electrophilicity of the mono(base) adduct (B<sub>4</sub>H<sub>8</sub>·SR<sub>2</sub>) would be greater than that of B<sub>4</sub>H<sub>8</sub>·S(CH<sub>3</sub>)<sub>2</sub>, but this stronger electrophile, B<sub>4</sub>H<sub>8</sub>·SR<sub>2</sub>, interacts with the weaker base SR<sub>2</sub> in order to form the bis(adduct) "B<sub>4</sub>H<sub>8</sub>·2SR<sub>2</sub>". Consequently, the order of coalescence temperatures is not necessarily parallel with the order of the base strength of the sulfides. The observed coalescence temperatures increase in the order of S(CH<sub>3</sub>)<sub>2</sub> < S(CH<sub>2</sub>)<sub>4</sub> < S(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>. The reported orders of base strength for dialkyl sulfides are S(CH<sub>3</sub>)<sub>2</sub> ≈ S(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> > S(CH<sub>2</sub>)<sub>4</sub> toward BH<sub>3</sub><sup>11</sup> and S(CH<sub>3</sub>)<sub>2</sub> > S(CH<sub>2</sub>)<sub>4</sub> > S(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> toward BCl<sub>3</sub>.<sup>12</sup>

Both  $B_4H_8 \cdot 2P(CH_3)_3$  and  $B_4H_8 \cdot 2N(CH_3)_3$  are fluxional. The fluxional motion of  $B_4H_8 \cdot 2P(CH_3)_3$  is slow at low temperatures on the NMR time scale, and therefore the signals of the two phosphine-bonded boron atoms are coalesced only above 0 °C.<sup>4b</sup> Whereas, the fluxional motion of  $B_4H_8 \cdot 2N(CH_3)_3$  appears to be fast, the two amine-bonded boron atoms are seen to be equivalent even at -80 °C.<sup>13</sup> A simple extrapolation of this fluxionality trend to the  $B_4H_8$  adduct of a weaker base,  $S(CH_3)_2$ , suggests that the same type of fluxional motion for " $B_4H_8 \cdot 2S(CH_3)_2$ " would be faster than that of  $B_4H_8 \cdot 2N(CH_3)_3$ . Apparently, however, the equilibrium shown in eq 13 is faster than the fluxional motion, and therefore only the coalescence of the  $B_3$  and  $B_{2,4}$  signals is observed. Should the relative rates of these two processes be reversed, the four boron atoms would appear all equivalent. A Lewis base that would bring about such an effect may exist, and is being sought.

(b)  $B_4H_8 \cdot P(CH_3)_3$  in Dialkyl Sulfides. The mechanistic model proposed in (a) above for the equivalency of the  $B_3$  and  $B_{2,4}$  atoms suggests that a similar dynamic behavior may be induced in  $B_4H_8 \cdot P(CH_3)_3$  when it is dissolved in  $S(CH_3)_2$ . The coalescence is expected to occur at a higher temperature than which was observed for  $B_4H_8 \cdot S(CH_3)_2$  in  $S(CH_3)_2$ , since the electron density on the  $B_4H_8$  moiety would be higher in  $B_4H_8 \cdot P(CH_3)_3$  than in  $B_4H_8 \cdot S(CH_3)_2$ . The observed data that are listed in Table I are consistent with this conjecture.

Trimethylphosphine-tetraborane(8) exists in two isomeric forms, exo and endo isomers;<sup>4b</sup> the <sup>11</sup>B NMR spectrum of B<sub>4</sub>-H<sub>8</sub>·P(CH<sub>3</sub>)<sub>3</sub> consists of two sets of signals. In the spectrum, although the B<sub>1</sub> and B<sub>2,4</sub> signals of the two isomers are severely overlapped, the B<sub>3</sub> signals of the two isomers appear separated from each other at -1.8 and +5.1 ppm. The population ratio of the two isomers is approximately 4:1 at 20 °C. At present, no evidence is available to decide which one of the exo and endo isomers is the more abundant species. Interestingly, the B<sub>3</sub> signal of the minor isomer at +5.1 ppm remained unchanged while the B<sub>3</sub> and B<sub>2,4</sub> signals of the major isomer coalesced. The uncoalesced B<sub>2,4</sub> signal of the minor isomer could not be identified clearly due to its overlap with the coalesced signal of the major isomer.

(c)  $B_4H_8$ ·N(CH<sub>3</sub>)<sub>3</sub> in Dialkyl Sulfides. Since N(CH<sub>3</sub>)<sub>3</sub> is a weaker base than P(CH<sub>3</sub>)<sub>3</sub>, the B<sub>3</sub> and B<sub>2,4</sub> atom sites of the B<sub>4</sub>H<sub>8</sub>·N(CH<sub>3</sub>)<sub>3</sub> molecule are expected to be more reactive toward nucleophiles than the corresponding sites in B<sub>4</sub>H<sub>8</sub>·P(CH<sub>3</sub>)<sub>3</sub>. Therefore, B<sub>4</sub>H<sub>8</sub>·N(CH<sub>3</sub>)<sub>3</sub> dissolved in dialkyl sulfides was expected to show the coalescence of the B<sub>3</sub> and B<sub>2,4</sub> signals at temperatures lower than those for B<sub>4</sub>H<sub>8</sub>·P(CH<sub>3</sub>)<sub>3</sub>. Contrary to this expectation, the coalescence did not occur even when the solutions were heated to the temperatures of the B<sub>4</sub>H<sub>8</sub>·P(CH<sub>3</sub>)<sub>3</sub> coalescence. Instead, when the tetrahydrothiophene solution of B<sub>4</sub>H<sub>8</sub>·N(CH<sub>3</sub>)<sub>3</sub> was further heated to about +60 °C, a new signal appeared at -4.0 ppm in the spectrum of B<sub>4</sub>H<sub>8</sub>·N(CH<sub>3</sub>)<sub>3</sub> (see Figure 3). This change is reversible with respect to the temperature variation.

Currently, no unequivocal explanation can be offered for the different behavior of  $B_4H_8$ ·N(CH<sub>3</sub>)<sub>3</sub> in the dialkyl sulfides. However, the noncoalescence that was observed for one of the  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub> isomers may be related to the observed behavior of  $B_4H_8$ ·N(CH<sub>3</sub>)<sub>3</sub>. That is, the trimethylamine adduct, which appears to exist in only one isomeric form at +20 °C, may have the same conformation as the inactive (or minor) isomer of  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub>. As the temperature is increased, the other isomer of  $B_4H_8$ ·N(CH<sub>3</sub>)<sub>3</sub> is produced in the solution by a slow equilibrium, and its already coalesced  $B_{2-4}$  signal appears at -4.0 ppm. Hopefully, the results of X-ray structural studies of these  $B_4H_8$  adducts, which are being initiated, will provide a clearer answer.<sup>14</sup>

#### **Experimental Section**

Chemicals and Equipment. Conventional vacuum-like techniques were used throughout for the handling of volatile, air-sensitive compounds. Dimethyl and diethyl sulfides and tetrahydrothiophene (Kodak Laboratory and Research Products) were refluxed and distilled over calcium hydride and stored over molecular sieves. Laboratory stock pentaborane(11),<sup>44</sup> trimethylphosphine,<sup>45</sup> trimethylamine,<sup>3</sup> and dichloromethane<sup>46</sup> were used. A Varian FT-80A NMR spectrometer was used routinely for the <sup>11</sup>B NMR spectral acquisitions unless otherwise stated.

<sup>(11)</sup> Coyle, T. D.; Kaesz, H. D.; Stone, F. G. A. J. Am. Chem. Soc. 1959, 81, 2089.

<sup>(12)</sup> Morris, H. L.; Kulevsky, N. I.; Tamres, M.; Searles, S., Jr. Inorg. Chem. 1966, 5, 124.

<sup>(13)</sup> The <sup>11</sup>B(<sup>1</sup>H) (96.2 MHz) NMR spectrum of B<sub>4</sub>H<sub>8</sub>·2N(CH<sub>3</sub>)<sub>3</sub> in N(C-H<sub>3</sub>)<sub>3</sub> at -80 °C showed two clearly separated signals at -9.0 and -13.3 ppm (uncorrected) in a 1:1 intensity ratio. The details will be reported elsewhere along with other related observations.

<sup>(14)</sup> In the B<sub>4</sub>H<sub>9</sub><sup>-</sup> ion, the endo B<sub>1</sub>-H hydrogen atom appears to undergo a rapid tautomeric motion while the exo B<sub>1</sub>-H bond is rigid.<sup>15</sup> Accordingly, in Scheme I, the exo isomer of the B<sub>4</sub>H<sub>8</sub> adduct is chosen to be the species that undergoes the rapid motion. However, this choice is by no means definitive.

<sup>(15)</sup> Remmel, R. J.; Johnson, H D., II; Jaworiwsky, I. S.; Shore, S. G. J. Am. Chem. Soc. 1975, 97, 5395.



Figure 3. Portion of the <sup>11</sup>B(<sup>1</sup>H) NMR spectrum (96.2 MHz) of B<sub>4</sub>-H<sub>8</sub>-N(CH<sub>3</sub>)<sub>3</sub> showing the growth of the -4.0 ppm signal at the higher temperatures.

The diethyl etherate of boron trifluoride was used as the external standard for the  ${}^{11}B$  shift values.

Isolation of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub>. A 0.453-mmol sample of  $B_5H_{11}$  was taken in a 9 mm o.d. Pyrex tube equipped with a Teflon valve and was dissolved in about a 2-mL sample of CH<sub>2</sub>Cl<sub>2</sub>. The solution was frozen at -197 °C, and a 0.983-mmol sample of S(CH<sub>3</sub>)<sub>2</sub> was condensed into the tube. The tube was placed in a -80 °C bath, shaken to mix the contents thoroughly, and then placed in the cooled probe of the NMR spectrometer. The <sup>11</sup>B NMR spectrum of the solution contained only the signals of BH<sub>3</sub>·S(C-H<sub>3</sub>)<sub>2</sub> and B<sub>4</sub>H<sub>8</sub>·S(CH<sub>3</sub>)<sub>2</sub>.

The tube was then placed in a -23 °C bath, and the volatile components were pumped out from the tube through a -63 °C trap into a -197 °C trap. From time to time, the liquid residue in the reaction tube was dissolved in a fresh, small portion of  $CH_2Cl_2$  to record the <sup>11</sup>B NMR spectrum of the solution at -30 °C. A total pumping time of 30 h was required to remove BH<sub>3</sub>·S(CH<sub>3</sub>)<sub>2</sub> completely from the product mixture. When the  $CH_2Cl_2$  solution containing pure B<sub>4</sub>H<sub>8</sub>·S(CH<sub>3</sub>)<sub>2</sub> was kept at room temperature for a few minutes, the signal of BH<sub>3</sub>·S(CH<sub>3</sub>)<sub>2</sub> became detectable.

Formation of  $B_3H_{11}$ ·S(CH<sub>3</sub>)<sub>2</sub>. A 0.150-mmol sample of  $B_3H_{11}$  was taken in a 14 mm o.d. Pyrex tube equipped with a vertical-shape Teflon valve (VNMR valve, product of J. Young Scientific Glassware) and was dissolved in a 2.0-mL sample of CH<sub>2</sub>Cl<sub>2</sub>. Then, the tube was placed in a -95 °C bath, and a 0.160-mmol sample of S(CH<sub>3</sub>)<sub>2</sub> was slowly introduced over the  $B_3H_{11}$  solution, during which the solution was constantly agitated by shaking the tube in the bath. Then, the tube was inserted into the probe of a Varian XL-300 NMR spectrometer. The probe had been cooled to -100 °C prior to the insertion of the reaction tube. The spectrum obtained at -95 °C is shown in Figure 1. The probe temperature was increased to -80 °C and then to -60 °C in a stepwise fashion to record the spectra of the solution.

Sample Solutions for the Variable-Temperature NMR Studies. (a)  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub>. The sample of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub>, which was prepared as described earlier in this section, was dissolved in a 2-mL sample of S-(CH<sub>3</sub>)<sub>2</sub>. In a separate experiment, a 0.451 mmol sample of  $B_5H_{11}$  was dissolved in a 2-mL sample of S(CH<sub>3</sub>)<sub>2</sub> at -80 °C. The formation of  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub> and  $BH_3$ ·S(CH<sub>3</sub>)<sub>2</sub> was complete at this temperature. The  $B_4H_8$ ·S(CH<sub>3</sub>)<sub>2</sub> signals of these two solutions showed identical changes with respect to the temperature variation.

(b)  $B_4H_8 \cdot S(C_2H_5)_2$  and  $B_4H_8 \cdot S(CH_2)_4$ . The sample solution of  $B_4$ -H<sub>8</sub> \cdot S(C\_2H\_5)\_2 was prepared in a 9 mm o.d. Pyrex tube by dissolving a 0.573-mmol sample of  $B_5H_{11}$  in a 2-mL sample of  $S(C_2H_5)_2$  at -80 °C and raising the temperature slowly to -60°C. The sample solution of  $B_4H_8 \cdot S(CH_2)_4$  was prepared similarly by dissolving a 0.516-mmol sample of  $B_5H_{11}$  in a 2-mL sample of  $S(CH_2)_4$ .

(c)  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub>. A 0.51-mmol sample of  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub>, prepared in a 9 mm o.d. Pyrex tube by treating  $B_4H_8$ ·2P(CH<sub>3</sub>)<sub>3</sub> with  $B_2H_6$ ,<sup>4b</sup> was dissolved in a 1.5-mL sample of S(CH<sub>3</sub>)<sub>2</sub>. Another 0.52-mmol sample of  $B_4H_8$ ·P(CH<sub>3</sub>)<sub>3</sub>, which was similarly prepared, was dissolved in a 2-mL sample of S(CH<sub>2</sub>)<sub>4</sub>.

(d)  $B_4H_8 \cdot N(CH_3)_3$ . A 0.68-mmol sample of  $B_4H_8 \cdot N(CH_3)_3$ , prepared in a 9 mm o.d. Pyrex tube by the literature method,<sup>44</sup> was dissolved in a 1.5-mL sample of  $S(CH_3)_2$ . After the completion of the measurements, the solvent  $S(CH_3)_2$  was pumped out completely from the tube, and the remaining  $B_4H_8 \cdot N(CH_3)_3$  was dissolved in a 1.7-mL sample of  $S(CH_2)_4$ .

The <sup>11</sup>B NMR spectra of these sample solutions were recorded on the FT-80A spectrometer. The spectra of the  $S(CH_2)_4$  solution of  $B_4H_8$ ·  $N(CH_3)_3$  were also recorded on a Varian XL-300 spectrometer, so that the high-temperature signal at -4.0 ppm could be observed well-separated from the  $B_3$  and  $B_{2,4}$  signals, as shown in Figure 3. At +60 °C, decompositions of  $B_4H_8$ ·N(CH<sub>3</sub>)<sub>3</sub> proceeded at an appreciable rate. However, the appearance-disappearance of the -4.0 ppm signal was reversible with respect to the temperature variation.

Acknowledgment. We gratefully acknowledge the support of this work by the U.S. Army Research Office through Grant DAAG 29-85-K-0034.

Contribution from the Departments of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, and King's College, Wilkes-Barre, Pennsylvania 18711

# Me<sub>3</sub>Al·NH<sub>3</sub> Formation and Pyrolytic Methane Loss: Thermodynamics, Kinetics, and Mechanism

Frederick C. Sauls,<sup>\*,1a</sup> Leonard V. Interrante,<sup>\*,1b</sup> and Zhiping Jiang<sup>1b</sup>

### Received December 14, 1989

The thermodynamics, kinetics, and mechanism of the reactions  $Me_3Al + NH_3 \rightarrow Me_3Al \cdot NH_3 \triangleq \frac{1}{3}(Me_2AlNH_2)_3 + CH_4$  in homogeneous solution were investigated by solution calorimetry, DSC, and <sup>1</sup>H NMR rate measurements. The enthalpy for complex formation from NH<sub>3</sub> and monomeric Me<sub>3</sub>Al in benzene was -93 kJ/mol. The observed  $\Delta H$  for methane loss from the complex was -82.2 kcal/mol. Methane loss from Me<sub>3</sub>Al·NH<sub>3</sub> was catalyzed by excess Me<sub>3</sub>Al monomer or monomeric Me<sub>2</sub>AlNH<sub>2</sub> in equilibrium with (Me<sub>2</sub>AlNH<sub>2</sub>)<sub>2</sub> and (Me<sub>2</sub>AlNH<sub>2</sub>)<sub>3</sub>. A mechanism for the Me<sub>2</sub>AlNH<sub>2</sub>-catalyzed reaction involving formation of the methyl-bridged intermediate ( $\mu$ -Me)(Me<sub>2</sub>AlNH<sub>2</sub>)(Me<sub>2</sub>Al·NH<sub>3</sub>) and subsequent loss of CH<sub>4</sub> by proton transfer was proposed. The enthalpy of activation for the autocatalytic reaction was 92.8 kJ/mol. A deuterium isotope effect of 8.8 was measured for this reaction. A similar mechanism was proposed for the Me<sub>3</sub>Al-catalyzed reaction, involving formation of an analogous methyl-bridged species ( $\mu$ -Me)(Me<sub>3</sub>Al)(Me<sub>2</sub>Al·NH<sub>3</sub>), which apparently loses CH<sub>4</sub> and closes to metastable ( $\mu$ -NH<sub>2</sub>)( $\mu$ -Me)Al<sub>2</sub>Me<sub>4</sub>. This slowly disproportionates to (Me<sub>3</sub>Al)<sub>2</sub> and (Me<sub>2</sub>AlNH<sub>2</sub>)<sub>3</sub>; the autocatalytic path is thus slowed.  $\Delta H^*$ , for the Me<sub>3</sub>Al-catalyzed pathway was 113 kJ/mol. The deuterium isotope effect was 5.5.

#### Introduction

A general route to nonoxide ceramic materials is the pyrolytic decomposition of a suitable organometallic precursor. While this

<sup>(1) (</sup>a) King's College. (b) Rensselaer Polytechnic Institute.